
Data-Leak Driven Membership Inference
Attacks on LeNet5
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Abstract

This research explores the vulnerabilities and
defenses of neural networks, focusing on the
membership inference attack. Our investiga-
tion involves implementing a grey-box mem-
bership inference attack on a Lenet5 model,
utilizing the CIFAR-10 dataset.

The attack implementation involves strategi-
cally sampling a percentage of data from train-
ing and testing datasets, creating a demarcation
between known and private parts. Employing
kernel density estimation, we predicted mem-
bership by evaluating probabilities of known
and private datasets. Moreover, we computed
the Wasserstein distance metric to analyze
what impact has the percentage of data leakage
on the success of the attack.

Furthermore, the research extends its focus to
defense mechanisms. For example, the L2 reg-
ularization defense mechanism effectively in-
creased the uncertainty in the model’s predic-
tions, making it more difficult to confidently
infer membership status.

Code and plots related to this research can be
found at:
https://github.com/Marti2405/MIA-DataLeak

1 Introduction

Membership Inference Attack (MIA) is a privacy
attack in which the adversary wants to establish if
a sample was used to train the target model or not.
It is interesting that even if the attacker has only
black-box access to the model, the attack can still
be successfully done since the output of the target
is all the adversary needs.

Why is this a privacy issue? Let’s consider a
target model that has in the training data people
who suffer from cancer. If attackers know who is
part of this dataset, they will have access to private
information about the patients, which leads to data
leakage.

We implemented a well-known technique based
on the observation that models assign higher proba-
bilities to their training data than test data. The
adversary simply thresholds the model’s output
confidence to determine whether a given data point
was used to train the model.

The most known cause of membership attacks is
lack of generalization (Yeom et al., 2018), because
of the high difference between the confidence of
test predictions and train predictions. Therefore,
we chose to defend our attack by making our model
less overfitted, improving its approximation ability.
We achieved that by using L2 regularization, which
is detailed in Section 3.

1.1 Research Question

We implemented a grey-box MIA attack on a
Lenet-5 model and observed how the awareness
of training data affects the success of predicting
whether an image is part of the remaining, undis-
closed data and how the regularization impacts the
success rate of the attack.

2 Research Background

MIA attacks can be divided into three categories
(Niu et al., 2023), based on how much information
the attacker has about the target model:

• black-box attack - the attacker knows only the
outputs of the target model

• gray-box attack - the attacker knows the distri-
butions of the training data, which were used
to train the target model

• white-box attack - the attacker knows all the
information of the target model

In (Carlini et al., 2022), the Likelihood Ratio
Attack (LiRA) is proposed, a powerful MIA attack,
which can achieve a much higher true-positive rate
at low false-positive rates. To implement LiRA, the
attacker collects a set of IN (same training data as
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the target model) and OUT (different training data
than the target model) models. Then, by comparing
the target model outputs on both IN and OUT mod-
els, LiRA can identify patterns that reveal whether
an example belongs to the training set or not.

Another approach (Shokri et al., 2017) implies
mimicking the target model using shadow models.
A shadow model is trained on a similar distribu-
tion data as the target model one and classifies the
input as in or out. Based on these shadow model
predictions, an attack model is trained to learn the
pattern between data that are included or not in the
training data.

In (Hintersdorf et al., 2023), there are two types
of attacks assumed from thresholds. Prediction
Score-Based Attacks rely on the highest score and
exploit the top-3 values of the prediction score vec-
tor, the maximum value, and the entropy. An exam-
ple is labeled as a member if the maximum value is
higher than a threshold. An entropy-based attacks
use a similar principle, it computes the entropy on
the whole prediction score vector and classifies an
input as a member if the entropy is lower than a
threshold.

There are four strategies to defend against this
type of attack: Confidence Masking, Regulariza-
tion, Differential Privacy, and Knowledge Distil-
lation (Hu et al., 2021). The first one refers to
masking the confidence outputs of the target model
(e.g. by returning only top-k probabilities). Resolv-
ing the lack of generalization is another cause that
can be fixed using many approaches (e.g. L2 reg-
ularization, data augmentation, etc). Overfitting
serves as a sufficient, though not necessary, factor
in causing membership inference attacks (Yeom
et al., 2018), advantaging on the generalization er-
ror. To add some noise to the gradient to ensure
data privacy or to distillate the target model out-
puts are the last two techniques presented in the
above-mentioned study.

3 Theoretical analysis

3.1 Attack

3.1.1 Why Should the Attack Work?
The effectiveness of the membership inference at-
tack can be theoretically understood through the
inherent characteristics of machine learning (ML)
models, particularly deep neural networks (DNNs).

Firstly, ML models, including DNNs, are often
overparameterized, meaning they possess enough
capacity to memorize information from their train-

ing dataset. This overparameterization leads to the
phenomenon where the model exhibits different
behaviors on training data records (members) com-
pared to test data records (non-members). Specif-
ically, during training, the model learns to mini-
mize the prediction loss on its training members,
resulting in higher confidence scores for correctly
classified training data.

Secondly, the finite size of training datasets and
the repetitive nature of training epochs contribute to
the model’s ability to memorize specific instances.
Consequently, the model’s parameters store sta-
tistically correlated information about individual
training data records.

These characteristics enable an attacker to ex-
ploit the discrepancy in behavior between training
and test data to build attack models that distinguish
between members and non-members of the training
dataset.

3.1.2 How Does the Attack Work?
The proposed attack leverages the observed differ-
ences in prediction loss between training and test
data to infer membership status. Specifically, the
attack involves the following steps:

1. Obtain access to a percentage of the dataset
used in training the victim model and a sep-
arate dataset of private images not known by
the model.

2. Record the prediction loss for each sample in
both datasets.

3. Utilize a kernel density estimator (KDE) to
derive the distribution of prediction loss for
members and non-members of the training
dataset. The KDE formula is given by:

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
(1)

where K(·) is the kernel function, xi are the
recorded losses, h is the bandwidth, and n is
the number of samples.

4. Establish a threshold based on the distri-
butions to classify samples as members
or non-members. The attack function
Mloss(p̂(y|x), y) is defined as follows:

Mloss(p̂(y|x), y) =

{
1 if L(p̂(y|x), y) ≤ τ

0 otherwise

where L(·) is the cross-entropy loss function
and τ is a preset threshold.



5. Assess the impact of the percentage of the
dataset on the distributions by measuring the
Kullback-Leibler (KL) distance between the
distributions for different percentages.

By exploiting the inherent differences in predic-
tion loss between training and test data, coupled
with the memorization capabilities of ML models,
the attack should identify membership status.

3.2 Defense

3.2.1 Confidence Masking
Confidence masking is a defense strategy that in-
volves limiting the amount of confidence informa-
tion revealed by the ML model. Instead of provid-
ing precise probability scores for each class, the
model only outputs the top k most probable classes,
where k is a predefined threshold. Mathematically,
this can be expressed as:

p̂(y|x) = argmaxk p(y|x)

where p̂(y|x) represents the masked probability
distribution over classes, and p(y|x) is the original
probability distribution.

This defense mechanism reduces the granularity
of information available to the attacker, making it
harder to infer membership status based on con-
fidence scores alone. By limiting the attacker’s
ability to distinguish between training and test data,
confidence masking enhances the privacy of the
ML model.

3.2.2 Regularization
Regularization techniques aim to improve the gen-
eralization ability of ML models by penalizing
overly complex or overfitted models. One common
regularization method is L2 regularization, which
adds a penalty term to the loss function based on
the magnitude of the model’s weights:

Loss = Original Loss + λ
∑
i

w2
i (2)

where λ is the regularization parameter and wi

are the model weights.
By encouraging smoother decision boundaries

and reducing the sensitivity of the model to indi-
vidual training instances, L2 regularization helps
prevent the model from memorizing training data
and thus mitigates the risk of membership inference
attacks.

3.2.3 Differential Privacy
Differential privacy is a rigorous privacy frame-
work that provides strong guarantees against mem-
bership inference attacks. It ensures that the pres-
ence or absence of any individual training sample
has a negligible impact on the model’s output prob-
abilities.

Mathematically, differential privacy is character-
ized by the ε-differential privacy parameter, which
quantifies the level of privacy protection. A ran-
domized mechanism is ε-differentially private if,
for any pair of datasets that differ in a single sample,
the probability of observing any output is approxi-
mately the same.

Pr[M(D) ∈ S] ≤ eε × Pr[M(D′) ∈ S]

where M(D) is the output of the mechanism
on dataset D, S is the set of possible outputs, and
D′ is a neighboring dataset differing in a single
sample.

Differential privacy offers strong provable guar-
antees against membership inference attacks by
ensuring that the model’s output probabilities are
insensitive to individual training samples, thereby
protecting the privacy of training data.

3.2.4 Knowledge Distillation
Knowledge distillation is a technique that involves
training a smaller, more lightweight model (known
as a student model) to mimic the behavior of a
larger, more complex model (known as a teacher
model). By transferring knowledge from the
teacher model to the student model, knowledge
distillation can improve the generalization ability
of the student model and reduce the risk of overfit-
ting training data.

Mathematically, knowledge distillation involves
minimizing the Kullback-Leibler (KL) divergence
between the output distributions of the teacher and
student models:

KL(P ||Q) =
∑
i

P (i) log

(
P (i)

Q(i)

)
(3)

where P and Q are the probability distributions
of the teacher and student models, respectively.

By transferring knowledge from the teacher
model to the student model, knowledge distilla-
tion can improve the generalization ability of the
student model and reduce the risk of overfitting
training data.



In summary, defense strategies against member-
ship inference attacks leverage various mathemat-
ical principles and techniques to enhance the pri-
vacy and security of machine learning models. By
limiting the information available to attackers, im-
proving model generalization, and ensuring strong
privacy guarantees, these defenses help mitigate
the risk of privacy breaches and safeguard sensitive
training data.

4 Implementation

4.1 Data

CIFAR-10 (Canadian Institute for Advanced Re-
search, 10 classes) is a well-known dataset in the
field of computer vision and machine learning that
contains 60000 of 32x32 color images in 10 classes
presented in Figure 1. We loaded the dataset using
the PyTorch dataset library. The only data pro-
cessing that we have done is pixel standardization,
making certain features (pixels) with larger values
not dominate the learning process.

Figure 1: The 10th Classes of CIFAR-10 [source]

4.2 Model

4.2.1 Architecture

Lenet-5 (Lecun et al., 1998) stands out as one of
the earliest models that can recognize both hand-
written and machine-printed characters. Its popular-
ity is attributed to its simple architecture, featuring
a multi-layer convolutional neural network specifi-
cally tailored for image classification.

Why did we choose this model? Initially, we
tried to implement the attack using ResNet-18 (He
et al., 2015), a model for which the test and train
loss distributions did not overlap; therefore, the
attack would work for 100% of the cases. We
changed the model to Lenet-5 because the training
and the testing losses are well-distributed.

Figure 2: Lenet-5 Architecture (Lecun et al., 1998)

As can be seen in Figure 2, there are seven layers:
two sets of convolution layers with a combination
of average pooling followed by two fully connected
layers and the output layer. The activation function
that is used is tahn.

As shown in Figure 3, using the Adam opti-
mizer (Kingma and Ba, 2014) and setting the learn-
ing rate to 0.001, the batch size as 128, and the
epochs number to 100, we reached a training accu-
racy of 92.84% and a test one of 51.52%.

Figure 3: Accuracy evolution during training and testing

4.2.2 Attack
Our initial approach was to model loss arrays as
Gaussian distributions (the same idea from (Car-
lini et al., 2022)) but, out of the three used loss
functions, only one is unimodal: the cross entropy
(Equation 4), the other two (normalized probabil-
ity loss and probability loss) being bimodal. We
tried to normalize this right-skewed unimodal dis-
tribution with the following transformations (West,
2021): square root transformation (for moderate
skew), natural logarithm (for high skew), and log-
arithm in base 10 (for high skew). None of these
strategies worked; therefore, we pointed to another
approach, which is detailed in the following para-
graphs.

Moreover, we calculated the distance using KL
Divergence (Equation 3), but it was not suitable for
our case since we could not compare the computed
values for different sample sizes (when the sample
size increases, the KL Divergence increases). We
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scaled this distance by dividing by the number of
samples, but the results did not give us a clear
pattern as we expected.

Figure 4: Attack Preparation and Execution

The implementation of the attack (Figure 4)
starts with retrieving a certain percentage from the
training and testing datasets (from 1% to 16%).
We can observe in Figure 5 that the sampled data
(black points) are spread across the entire data do-
main, thus, the sampled data is representative of all
our data.

Figure 5: 10% sample of the Dataset

We supposed that the attacker knows this per-
centage from our training data, thus, each dataset
is split into a known part and a private part, which
represents the data that the attacker knows for sure
it was not used for training the model. We took
the private data from the test dataset, but in real-
ity, any images that do not contain one of the ten
classes can be used, meaning that they are drawn
from another distribution.

With this percentage of data, we randomly
sampled that amount of data. We computed
the loss arrays for the train known dataset and
the private dataset, utilized a kernel density
estimation (Equation 1) with a Gaussian Ker-
nel, and predicted the membership for our train-
ing data. This was predicted by comparing

known density probability
known density probability+private density probability with 0.5.
When it is above this value, we labeled the exam-
ple as being from the training dataset.

H(p, q) = −
∑

x∈classes
p(x) log q(x) (4)

ϕ(p) = log (
p

1− p
) (5)

Then, we evaluated the membership prediction
using another percentage of training and test data,
to see the accuracy of our attack. Finally, we used
Equation 6 (where τ(u, v) is the set of probability
distributions on whose marginals are and on the
first and second factors respectively) to compute the
Wasserstein distance for every percentage of data,
to compare the densities of the loss distributions.

l1(u, v) = infπ∈τ(u,v)

∫
RxR

|x− y|dπ(x, y) (6)

We made experiments for three loss functions
(Carlini et al., 2022): probability loss, cross-
entropy loss (Equation 4), and normalized prob-
ability loss (Equation 5). For each of them, we
ran every step ten times, computing the average
of the measured metric and plotting the confusion
matrices and the Wasserstein distances.

4.2.3 Defense

The implementation of the defense is made on top
of the attack. We chose the regularisation approach,
using the L2 regularization (Equation 2), search-
ing over three values of lambda (strength): 1e-1,
1e-2, 1e-3. The conclusion is that the value of 1e-1
is too strong, therefore, the train and test accuracy
are around 19.2%. The last value made did not reg-
ularize the model, resulting in a training accuracy
of 89.85% and a test accuracy of 56.21%. The only
lambda value that fits our needs is 1e-2, which
gave us a training accuracy of 63.22% and a test-
ing one of 61.19% (Figure 6).



Figure 6: Accuracy evolution during training and testing
of the regularized network

5 Numerical Analysis

As we already discussed in Section 4, only the
cross entropy loss distribution is unimodal. This
can be seen in Figure 7. In those plots can be
observed the losses for our model predictions for
a data sample at different percentages of leaked
training data. When it comes to the second graph,
it is illustrated that the model is overly confident in
the training set.

Figure 7: Histogram of every type of loss

5.1 Influence of Known Data Percentage
As illustrated in Figure 11 and Figure 10, we can
see that beyond a certain threshold (here 2%), vari-
ations in the percentage of known data cease to
exert discernible effects on both the False Positive
Rate and the Accuracy of the attack.

In Figure 9 and 8, it is illustrated that before
the defense, the Wasserstein distance exhibits an
increasing trend with the leaked data percentage,
meaning that as known and private distributions
are more and more different. After the defense,
when more data is leaked, the distances decrease,
meaning that knowing more data does not increase
the attack’s accuracy.

Figure 8: Wasserstein Before Defense

Figure 9: Wasserstein After Defense

This observation underscores the importance of
having a sufficient quantity of data to accurately
approximate the complete loss distribution of the
dataset. Once this threshold is met, additional varia-
tions in the percentage of known data seem to have
negligible impacts on the performance metrics of
the attack.



Figure 10: FPR for Different Training Data Percentages
Before Defense

Figure 11: Accuracy for Different Training Data Per-
centages Before Defense

5.2 Accuracy of our model
5.2.1 Before Defense

Figure 12: Confusion Matrix for Cross Entropy Model

Before applying the defense mechanism, our model
exhibited consistent accuracy across different loss
functions and percentages of leaked training data.
The confusion matrix illustrated in the figure 12
shows that our model achieved a true positive rate
(TPR) of approximately 40%, indicating its abil-
ity to correctly predict membership when present.
However, the false positive rate (FPR) is around
24%, suggesting that the model occasionally mis-
classifies non-members as members.

Despite efforts to optimize the FPR, lowering it
below 16% proved challenging without sacrificing

the TPR. Thus, our model demonstrated limitations
in achieving a low FPR while maintaining a reason-
able TPR.

5.2.2 After Defense

Figure 13: Confusion Matrix for Cross Entropy Model,
Defended

After implementing the defense mechanism, our
model’s performance improved significantly in
terms of FPR. As shown in the confusion matrices
(Figure 13), the FPR increased, almost matching
the TPR. This indicates that the defense mechanism
effectively increased the uncertainty in the model’s
predictions, making it more difficult to confidently
infer membership status.

Figure 14: FPR for Different Training Data Percentages
After Defense

Figure 15: Accuracy for Different Training Data Per-
centages After Defense



After defending the network, the FPR for the
cross-entropy loss stands out, being much larger
than the other two (Figure 14). The accuracy of the
attack (Figure 15) dropped from more than 64% for
most percentages of known data, to values around
50%. This happens for any type of loss, making
the attack ineffective.

Overall, the defense mechanism demonstrated
robustness against the membership inference attack,
significantly mitigating the risk of privacy breaches
by increasing the false positive rate and rendering
the attack less effective.

This analysis suggests that while the member-
ship inference attack exhibits potential efficacy, par-
ticularly if a method for achieving a 0 false positive
rate can be devised, the defense mechanism stands
as a robust barrier against such intrusions.

6 Improvements and Limitations

6.1 Attack

Further enhancements to the proposed membership
inference attack involve exploring distributions in
features beyond the target one. A comprehen-
sive investigation into diverse data domains would
reveal the attack’s effectiveness on various mod-
els. Moreover, introducing an attack model to dy-
namically learn optimal patterns in target model
confidences could improve the attack’s precision.

Assessing the generalizability of the attack
methods across different neural network models
is crucial for understanding their real-world impli-
cations. Moreover, future research could focus on
quantifying the relationship between overfitting
percentages and the success of the membership
inference attack.

One clear limitation of our attack is that there
is needed a high gap between the test and training
loss distributions, otherwise, the attack will not be
successful. Therefore, a certain level of overfitting
is required.

6.2 Defence

As we presented in Section 3, there are many de-
fense strategies for this type of attack. While our
current research focuses on L2 regularization as
a defense mechanism, exploring alternative meth-
ods may reveal more effective approaches. Future
research should involve testing multiple defense
strategies to analyze which is the best-to-use de-
fense mechanism for our attack. By identifying
this, we can enhance the overall security of neural

networks, making them more resistant to this type
of attack.

7 Conclusion

In summary, our research reveals key aspects of
neural network security. We find that overfitting
makes models more susceptible to attacks, empha-
sizing the need for robust training practices. In our
case, a straightforward L2 regularization served
as an effective defense strategy. The discovery that
a representative subset of data is enough for suc-
cessful attacks adds a better understanding of the
model’s vulnerabilities.
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